An Almost Sure Invariance Principle for Additive Functionals of Markov Chains

نویسندگان

  • YU MIAO
  • GUANGYU YANG
چکیده

In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Almost Sure Invariance Principle for Additive Functionals of Markov Chains

We prove an invariance principle for a vector-valued additive functional of a Markov chain for almost every starting point with respect to an ergodic equilibrium distribution. The hypothesis is a moment bound on the resolvent.

متن کامل

An invariance principle for the law of the iterated logarithm for vector-valued additive functionals of Markov chains

In this note, we prove the Strassen’s strong invariance principle for vectorvalued additive functionals of a Markov chain via the martingale argument and the theory of fractional coboundaries. AMS subject classifications: 60F05, 60J05

متن کامل

An Invariance Principle for the Law of the Iterated Logarithm for Additive Functionals of Markov Chains

In this paper, we prove Strassen’s strong invariance principle for a vector-valued additive functionals of a Markov chain via the martingale argument and the theory of fractional coboundaries. The hypothesis is a moment bound on the resolvent.

متن کامل

The Law of the Iterated Logarithm for Additive Functionals of Markov Chains

In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.

متن کامل

Parametric first-order Edgeworth expansion for Markov additive functionals. Application to M-estimations

We give a spectral approach to prove a parametric rst-order Edgeworth expansion for bivariate additive functionals of strongly ergodic Markov chains. In particular, given any V geometrically ergodic Markov chain (Xn)n∈IN whose distribution depends on a parameter θ, we prove that {ξp(Xn−1, Xn); p ∈ P, n ≥ 1} satis es a uniform (in (θ, p)) rst-order Edgeworth expansion provided that {ξp(·, ·); p ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007